Artificial Neural Networks to reconstruct incomplete satellite data: application to the Mediterranean Sea Surface Temperature
نویسندگان
چکیده
Satellite data can be very useful in applications where extensive spatial information is needed, but sometimes missing data due to presence of clouds can affect data quality. In this study a methodology for pre-processing sea surface temperature (SST) data is proposed. The methodology, that processes measures in the visible wavelength, is based on an Artificial Neural Network (ANN) system. The effectiveness of the procedure has been also evaluated comparing results obtained using an interpolation method. After the methodology has been identified, a validation is performed on 3 different episodes representative of SST variability in the Mediterranean sea. The proposed technique can process SST NOAA/AVHRR data to simulate severe storm episodes by means of prognostic meteorological models.
منابع مشابه
The pattern determination of sea surface temperature distribution and chlorophyll a in the Southern Caspian Sea using SOM Model
Remote sensing has changed modern oceanography by proving synoptic periodic data which can be processed. Since the satellite data are usually too much and nonlinear, in most cases, it is difficult to distinguish the patterns from these images. In fact, SOM (Self-Organizing Maps) model is a type of ANN (Artificial Neural Network) that has the ability to distinguish the efficient patterns from th...
متن کاملThe pattern determination of sea surface temperature distribution and chlorophyll a in the Southern Caspian Sea using SOM Model
Remote sensing has changed modern oceanography by proving synoptic periodic data which can be processed. Since the satellite data are usually too much and nonlinear, in most cases, it is difficult to distinguish the patterns from these images. In fact, SOM (Self-Organizing Maps) model is a type of ANN (Artificial Neural Network) that has the ability to distinguish the efficient patterns from th...
متن کاملAccuracy comparison of Elamn and Jordan artificial neural networks for air particular matter concentration (PM 10) prediction using MODIS satellite images, a case study of Ahvaz.
Due to the complexity of air pollution action, artificial intelligence models specifically, neural networks are utilized to simulate air pollution. So far, numerous artificial neural network models have been used to estimate the concentration of atmospheric PMs. These models have had different accuracies that scholars are constantly exceed their efficiency using numerous parameters. The current...
متن کاملThe Prediction of Surface Tension of Ternary Mixtures at Different Temperatures Using Artificial Neural Networks
In this work, artificial neural network (ANN) has been employed to propose a practical model for predicting the surface tension of multi-component mixtures. In order to develop a reliable model based on the ANN, a comprehensive experimental data set including 15 ternary liquid mixtures at different temperatures was employed. These systems consist of 777 data points generally containing hydrocar...
متن کاملApplication of Artificial Neural Networks (ANN) and Image Processing for Prediction of the Geometrical Properties of Roasted Pistachio Nuts and Kernels
Roasting is the most common way for pistachio nuts processing, and the purpose of that was to increase the products total acceptability. Purpose of this study was to investigate the effect of temperature (90, 120 and 150°C), time (20, 35 and 50 min), and roasting air velocity (0.5, 1.5 and 2.5 m/s) on geometrical attributes of pistachio nuts and kernels including principle dimensions, shape fac...
متن کامل